
Iltt J 51.juls ,'itrU4'rU'f".l "oL 1~. So. 14,15. pp. 1~9-~3, 11NZ
Pnrlll.-d m Great 8ntatn.

OO:().-76X.l~1 SS.Ot)•.00
Pergamun Press pj~

INTERFACE CRACKS IN ANISOTROPIC ELASTIC
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Abstract-For a mismatched bimaterial with a single interface crack subject to a constant traction
along the crack surface. the solution can be written e:'tplicitly. separated into oscillatory part and
non-oscillatory part. The separation is shown to be related to the decomposition of the surface
traction tr into two components t~ and If. t~ is in the direction of the right null vector of the 5
matri:'t defined in the paper and t~ ties on the right eigenplane 01'5. The solution associated with t~
is non-oscillatory. It has the property that the traction along the interface is in the direction of the
right null vector of 5 white the crack opening displacement is in the direction of the left nutl vector
of S. The solution associated with t~. on the other hand. is oscillatory. It has the property that the
traction along the interface lies on the right eigenplane of 5 while the crack opening displacement
lies on the left cigenplane of S. The same decomposition and properties hold for multiple interface
cracks with vari;lble tractions prescribed on the crack surfaces.

I. INTRODUCTION

The prohlem of an interface crack in isotropic bimaterials was tirst studied by Williams
(llJ5lJ) and Erdogan (1%3) for the semi-infinite crack and by England (1965). Erdogan
(1965) and Rice and Sih (1965) for a fillite: crack. For an interface crack in anisotropic
bimaterials. Gotoh (1967) studied the problem under the condition of plane stress which
applies to monoclinic materials with the phtne of symmetry at x, = n. The problem of a
finite interface cmck in geneml anisotropic bimaterhtls was first investigated by Clements
( IlJ71 ) and Willis (1971). In recent ye'lrs the eleg.tnt and powerful Stroh formalism for two­
dimensional anisotropic elasticity has rekindled interests in the subject and many works
have appeared such as Ting (1986). Bassani and Qu (1989). Qu and Bassani (1989). Tewary
c/ al. (1989). Suo (1990). Wu (1990.1991. in press). Ting (1990b). Hwu (in press). Li and
Nemat-Nasser (1991). Gao L'{ al. (in press) and Qu and Li (in press).

Il is known lhat the solution for the displaeemenl is in general oscillatory when the
two materials in the bimaterial arc mismatched. However. a mismatched bimaterial docs
not always produce oscillatory solutions. The oscillation in displacement depends not only
on the mismatch parameter {/ but also on the prescribed traction t r on the crack surface.

After presenting briefly the Stroh formalism for two-dimensional elasticity und certain
idenlilies ncedcd for the subject in Section 2. we begin Section 3 by considering the solution
for a crack in homogeneous anisotropic elastic materials. We then explore the applicability
of the solulion for a crack in a homogeneous medium to an interface crack in bimateriuls
in Section 4. It is shown that the non-oscillatory solution is valid for a mismutched bimaterial
if the prescribed traction is in the direction of the null vector of W. Section 5 discusses the
stress singularities at an interface crack tip which depend on the matrix 5. The three right
eigenvectors of 5 nre best represented by a right null vector (which is identical to the null
vector of W) and a right eigenplane. The decomposition of the solution into oscillatory and
non-oscillatory fields is achieved by decomposing the prescribed crack surface traction into
til. which is in the direction of the right null vector of 5 and th which lies on the right
eigenplane of5. The solution associated with t~ is non-oscillatory. It has the property that
the traction along the interface is in the direction of the right null vector of 5 while the
crack opening displacement is in the direction of the left null vector of 5. In Section 6 the
solution associated with t~ is shown to be oscillatory. It has the property that the traction
along the interface lies on the right eigenplane of S while the crack opening displacement
lies on the left eigenplane of 5. Similar properties are observed for line forces and line
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dislocations in anisotropic media (Ting. 1990a). The last section examines the general case
of multiple interface cracks with variable tractions prescribed on the crack surfaces. The
same decomposition and properties are shown to hold for the general case.

2. THE STROH FOR\J..\L1S\l

In a fixed rectangular coordinate system x, (i = I. 2. 3) let II,. aiJ be. respectively. the
displacement and stress in an anisotropic elastic material. The stress strain laws and the
equations of equilibrium are

(I)

(2)

where a comma stands for differentiation. repeated indices imply summ,ltion and e,ks are
the elasticity constants which are assumed to be fully symmetric and positive definite. For
two-dimensional deformations in which LI, depends on x ,. x~ only. a general solution to (2)
is. in matrix notation (Eshclby c( al.• 1953; Stroh. 1958. 1962).

u = an:). : = x, +px~. (3)

In the ahove f is an arbitrary function of:. and p and a are determined by inserting (3)
into (2). We have

(4)

where the superscript T dl.:notl.:s the transposl.: and Q. U. T arl.: 3 x 3 real matrices whose
components arl.:

Thl.: stresses obtained by suhstituting (3) I into (I) can hI.: written in terms of the stress

function r/J as

b = (U 1+pT)a =

in which

r/J = b/(:).

I
(Q+pl~)a.

p

(5)

(6)

(7)

The second equality in (7) follows from (4). It sullices therefore to consider the stress
function q, because the stresses a'l can be obtained by differentiation.

There arc six eigenvalues p from (4) which consist of three pairs ofcomplex conjugates.
If p,. a, (:x = I. 2•...• 6) arc the eigenvalues and the associated eigenvectors. we let

where 1m stands for the imaginary part and the overbar denotes the complex conjugate.
Assuming that p, are distinct. the general solution for u and r/J obtained by superposing six
solutions of the form (3) and (6) arc
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U= L {a./,(=.)+i./'+3(=.)},.-1
3

,p = L {bJ.(=.)+6J2+3(=.)}.
• - I

In (8) II' I: . ... , 16 are arbitrary functions of their argument and

In most applications I. assume the same function form so that we may write

/'(=.) = q./(=.).

/'+)(=.) = ii.!(=.), rx = 1,2.3,

1991

(8)

where q. are complex constants. The second equation is for obtaining real solutions for U

and ,p. Equations (8) can then be written as

U = 2 Re {A(/(z»q},

,p = 2 Re {B(/(=»q}.

Here Re stands for the real part, A, B are the 3 x 3 complex matrices defined by

and (/(:» is the diagonal m.ttrix

(9)

For a given problem all one has to do is to determine the unknown function I(z) and the
complex constant q.

The eigenvectors a. and the associated vectors b. are not unique. When they are
normalized by

2a•• b. = I, (rx not summed),

the three Barnett-Lothe tensors defined by

S = i(2ABT -I). H = 2iAAT
, L = -2iBBT

, (10)

are real (Barnett and Lothe, (973). It is clear that Hand L are symmetric. It can be shown
that they are positive definite (Chadwick and Smith, 1977; Gundersen et al., 1987; Ting,
1988) and that SH, LS, H -IS, SL - I are antisymmetric. Moreover S, H, L are related by

HL-SS = I.

Let (p) be the diagonal matrix:

and

It is shown in (Ting, 1988) that
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( II )

where

Identity (II) will be useful in the sequel. Another identity needed is

1\1 I = iAB I = i(ABT)(BB r )" I =:: L" 1_ iSL - I ( 12)

in which the last equality is deduced by applying (10). M is the surface impedance tensor
which is a positive definite Hermitian (lngebrigtsen and Tonning. 1969; Lothe and Barnett.
1976; Chadwick and Smith. 1977).

3. A CRACK IN A HOMOGENEOUS MEDIUM

Consider a crack of length 2alocated at X2 = O. Ix II < (l in a homogeneous anisotropic
elastic medium. A uniform traction tr is applied at the upper crack surface and - tr is
applied at the lower crack surface. The stresses vanish at infinity. The boundary conditions
for the stress function 4J are

4J=O. as Ixl->x

The solution in the form of (9) is (Stroh. 1958):

U =:: Re {A<'/;,(:»B I ]tr .

4J =:: Re {B<J.I(:»B I :tr.

where

For single-valuedness of the function j~(:). a cut at the crack is introduced so that

(13 )

( 14)

(15)

( 16)

( 17)

[t is readily shown that 4J of ( IS)! satisfies (13) and (14). Moreover. u and 4J are continuous
everywhere except that u is discontinuous at the crack.

Along the XI-axis. i.e. at X2 = O. the displacement u and the stresses obtained from (5)
can be expressed in a real form. Denoting the traction vectors t l • t! by

( 18)

and using identities (II) and (12). one obtains
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~L-I SL-'tU = ±va -XI tr+xl r,
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(19)

(20)

for X 1 = ±0, Ix iI < a. Equations (19) tell us that u, t I. t 1 along the x I-axis are monotonous.
The traction t 1 is independent of the material constants and is in the direction of the applied
traction t r . Equations (20) show that, along the crack. the displacement U and the hoop
stress vector t l have no oscillatory behavior. Other interesting and unexpected phenomena
which can be extracted from (19) and (20) are elaborated in Ting (in press).

From (20) I the crack opening is

A + - 2 ~L-ItuU = U -u = va--xi r.

The crack opening !:J.u is in general not in the direction of t r .

4. NON-OSCILLATORY SOLUTION FOR AN INTERFACE CRACK (Wtr = 0)

Let the half-space X~ > 0 and X2 <5 q be occupied by material I and material 2.
respectively. A single interface crack is located at X2 = O.lxll < u. The boundary conditions
for the problem arc

tPl = O. tP2 = O. as Ixl ..... 00,

U I = Uh tPl = tP2. at X2 = o. Ixil > a.

tPl = tP2 = -x1tr . at X2 = ±O. Ixil < u.

(21 )

(22)

(23)

The subscripts I. 2 for U and tP denote materials I and 2. respectively. We will investigate
in this section if the non-oscillatory solution (15) for a homogeneous medium applies to
materials I and 2.

Using subscripts 1.2 or superscripts (I). (2) to distinguish materials I and 2. let

for material 1 in X2 > 0 and

U 1 = Re {A 1(};J(:(I))Bi l }tr ,

tPl = Re {B I(fo(:(I))Bi l }tr •

U2 = Re {A 2(fo(:(2))B 2- I }tr •

tP2 = Re {B2(fo(:(21»Bi l }tr •

(24a)

(24b)

for material 2 in x 2 < o. It is readily shown that conditions (21 )-(23) are all satisfied except
(22) I. which yields

Employing identity (12) this is rewritten as
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Wtr = o.
W = 51 L 1

1
-5~L~ I.

(25)

(26)

There are two possibilities. IfW = O. (25) is satisfied for any t r . The solutions (24a.b)
are then valid for any t r when W = O. If W # O. (25) cannot be satisfied for arbitrary t r .

However. since W is antisymmetric. (25) can still be satisfied if t r is in the direction of the
null vector of W.

The two materials in the bimaterial are said to be "'mismatched" when W # O. We see
from the above analysis that. for a mismatched bimateriaL the non-oscillatory solution for
a homogeneous medium with a crack applies to the bimaterial with an interface crack if
the traction t r at the crack surface is in the direction of the null vector of W.

Regardless of whether W = 0 or not. the crack opening l1u obtained from (20) I is

(27)

where

(28)

When W # 0 and if t r is not in the direction of the null vector of W. one could
decompose t r into two components. one of which is along the null vector ofW. The solution
associated with this component is given by (24a.b). In the next two sections we define the
other component and the corresponding solution which is characterized by an oscillatory
field.

5. TilE NULL VECTORS AND TIlE EI<iFNI'LANES OF S

The stress singularities near the tip of an interface crack is proportional to r'\ where r

is the radial distance from the crack tip and () is a constant depending on the material
property of the bimaterial. It is shown in Ting (1986) that there arc three singularities given
by

where

1
- 2~ - ~+ ii', and - !- iiI. (29)

In the above

I I +fI I., = In = tanh I {J
I 2rr I -{J rr

{I= [-~tr(S~)lu < I. (30)

(31)

in which D and Ware defined in (28) and (26). It is clear that y = 0 if and only if {J = O. It
was pointed out by Ting (1986) and rigorously proved by Qu and Bassani (1989) that {J = 0
if and only if W = O. Since D is positive definite. we conclude that p, Y. Wand S are all
non-zero for mismatched bimaterials and all vanish for non-mismatched bimaterials. In the
rest of the paper we consider only mismatched bimaterials.

The tensor S is similar to 5. one of three Barnett-Lothe tensors in the following sense.
We see from (31) that S is the product of a symmetric positive definite tensor D- I and an
antisymmetric tensor W. So is 5 if we write
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S = L-'(LS).

Another reason for using the notation S is that. when L, = L~. (31) reduces to

1995

The eigenvalues and eigenvectors ofS have been studied extensively in Chadwick and
Ting (1987) and Ting (1990a). and the results reported there can be applied to S here. It is
shown in Ting (1986) that the eigenvalues of S are - ip. iP and 0 where Pis given in (30h.
If the associated eigenvectors are d. aand do. we have

Sd = - ipd. Sa = ipa. Sdo = o. (32)

do is the right null vector of S and is a real vector. d on the other hand is a complex vector
or a bivector (Gibbs. 1961 ; Boulanger and Hayes. in press). By setting

(33)

where d" d~ are real vectors and equating the real and imaginary parts of (32) I we have

(34)

Therefore

(35)

The right null vector do is unique up-to an arbitrary real multiplicative factor. The
right eigenvector d or aon the other hand is unique up to an arbitrary complex multiplicative
factor. If d is multiplied by a complex 1~lctor eio/l where'" is real.

Thus d;. d; lie on the plane spanned by d" d~. As'" varies the vectors d;. d; describe an
ellipse (Fig. I). A pair of diamelers in an ellipse is said to be conjugate if all chords parallel
to one diameter are bisected by the other diameter. Therefore the tangent at the extremity
of one diameter is parallel to the other diameter. It can be shown that d',. d; form a pair
of conjugate radii. One could choose a '" such that d;. d; are orthogonal and hence are the
principal radii of the ellipse (Ting. 1990a).

In view of the fact that the real and imaginary parts of the right eigenvectors d and a
of (32) 1.2 lie on a plane. we call this plane the right eigenplane of S. Any vector on this

RighI null vector - do

IOr L-- I r

-J--'?"'-...!

dj

Fig. I. The right eigenvectors ofS.
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plane can be taken as d 1 (or d z). which satisfies (35). The conjugate vector de (or dd is
then determined from (34) I or (34b

It should be pointed out that. with (31). the right null vector do is also the null vector
of W. Therefore. when t r is in the direction of do. the solution is given by (24a.b). If t r is
not in the direction of do as shown in Fig. I, we decompose it into two components:

(36)

where t~ is in the direction of do and f~ is on the right eigenplane. From (32) J and (35).

(37)

Multiplying (36) by se and using (37) leads to

(38)

whence, from (36),

(39)

Equations (38) and (39) provide an explicit expression for til and t~ in terms of t l·. The
solution associated with t~ is given in (24a,b) with t r there replaced by t:~. We discuss the
solution associated with ti· in the next section.

Before we close this section consider the left eigenvectors of S. from (3J l.

DS=W.

and the antisymmetric property of W means that

(40)

When (32) are multiplied by D and use is made of (40),

ST(Dd) = ifl(Dd), S'(DiI) = -i{J(ndl. S'(Ddn) = O.

Hence n(J, nd and Ddo are the left eigenvectors associated with the eigenvalues - ifl, ifl
and 0, respectively. We call Ddo the left null vector of S and the plane spanned by nd 1,

Dd 1 the left eigcnplane (Fig. 2).

Ddo - Left null vector

Left eigenplam::

Dd,

Fig. 2. The left eigenvectors of S.
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The left and right eigenvectors associated with different eigenvalues are orthogonal to
each other. Hence

(41)

The last equality tells us that the right null vector do is normal to the left eigenplane and
the left null vector Ddo is normal to the right eigenplane.

When t r is in the direction of the right null vector do, the crack opening displacement
&u given by (27) indicates that it is in the direction of the left null vector Ddo. The direction
of the traction t z along the interface is. by (19h. the same as t r and hence is in the direction
of the right null vector.

6. OSCILLATORY SOLUTION FOR AN INTERFACE CRACK (Wtr # 0)

In view of (31).

Wtr # 0 and Str # 0

are equivalent. As shown in (36) we decompose tr into two components t~ and t~ which
are given explicitly in (39) and (38). The solution associated with t~ is provided in (24a.b)
with tr there replaced by t~. We now study the solution associated with t~.

Of the three stress singularities at the crack tips listed in (29), the singularity J = - 1/2
represents a non-oscillatory solution and is provided by the function [0(=) in (16). The
other two singularities in (29) can be taken care of by considering the function

which has the property

J(=. y) =[(=. - y).

Along the x ,-axis,

(42)

where

~='nlx,-al·xl+a

Observing the factor e+'" in (42)z, consider the solution

u. = Re {e"'A I <[(="', y»B I- 'd +e' I 'A I <J(=( II. y»Bi'a},

~ I = Re {e"'B I <[(=( I., y»B ,' 'd +e ,"B I <J(:(I), 7»B 1- la},

for material 1 in X2 > 0 and

Uz = Re {e-;"Az<[(:IZ',y»Bz Id+e;"Az<J(=(ZI,y»Bi 1a},

~2 = Re {e- I'Bz<[(=l2I, y»Bild+el'Bz<J(z!2', y»Bi'a},

(43a)

(43b)

for material 2 in X2 < O. The solution in material 1 is identical to that in material 2 if n: is
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replaced by -1t (Suo. 1990). It can be shown that the solution meets conditions (21)-(23)
with tr in (23) replaced by t~ if d. asatisfy (32) I.~ and

(44)

To determine d. (44) is multiplied by S. which leads to

(45)

Equations (44) and (45) yield

/1 -f3'
d v (f3 " 'S-")= 0.0 2fJ - t r + I t r .

Real form expressions for the displacement u. the interface traction t, and the hoop
stress vector t l along the xI-axis are deduced from (43a.b) by using (18). (11) and (12).
For x, = O. ±x, > a.

u, = 2(cosh in) Re [(x, -+ ei)"~ J.~T=~z)(SI 1. 1 I+ iII Llo I )d) =

u~ = 2(cosh i1t) Re {(XI =+e';; J\"~-~;')(S,L, I -iflL~ ')d}.

t\l) = -2(cosh i'n) Re ([±'1(XI) ei;'~ -I)[G\Il+iflG\"jdJ·.

tll'l = -2(coshi1t) Re {[±'1(xl)e';~-I)[G\'I_if/G\'ljd).

t~ =2(cosh i'n) Re ([±r/(x,) e';'~ -Ijd}.

where

(46)

I
cosh in = _.

JI-f/'

For x~ = ±O. Ixil < (/.

u\ = 2 J{;~=-.~7LII Re {er;(d} +2x ,(cosh in) Re {(SI L , I+ifJL,- I )d}.

U2 = -2J;;T":::.~1L,-1 Re {ei;';d} + 2x,(cosh i'n:) Re {(S2 L i'-if/L 2 ')d}.

-?
til') = ~G~'I Re {(XI +2ii'a) er"~d} +2(cosh i'n:) Re {(G\II +ifIG1/I)d}.

...;a 2 -:d
?

t\~) =--1~;:::"-=~ G\21 Re {(x, +2ii'a) eC,';d} + 2(cosh i'n) Re {(Gil') - if3G~2)d} .
...; (/2 -x~

(47)

It is easily verified that (46). (47) reduce to those given in (19). (20) when fJ (and hence i')
vanishes. From (46) and (47) UI' t\11 in material 1 are identical to U20 t\21 in material 2 if
G~I). L ,I (but not S I L ,I) are replaced by - GIl'. - L i ' . respectively.

The traction t, along the interface Ix II > a as given in (46) depends on d. Consequently
t 2 lies on the right eigenplane of S as t~ does (Fig. 1). As x I varies from oc to a or from
- 00 to -a. t~ rotates on the right eigenplane with increasing frequency and amplitude.
The crack opening Au is obtained by subtracting u, from UI in (47). The second term
vanishes due to (32) I and hence
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Thus Au depends on Dd which. according to the discussions in the last section. is on the
left eigenplane of S (Fig. 2). As XI varies from 0 to 0 or from 0 to -0. Au rotates on the
left eigenplane with increasing frequency and diminishing amplitude.

7. MULTIPLE INTERFACE CRACKS WITH VARIABLE TRACTIONS

The decomposition principle for a single interface crack with constant traction t r can
be extended to multiple interface cracks with variable traction tr<xd with one minor
modification. In Fig. I the component tHx I) of tdx I) on the right eigenplane may not
remain in the same direction for a different x I' It is therefore necessary to select a fixed
right eigenvector d = d I + id~ on the right eigenplane and decompose t r (.\" I) in the form

(48)

In the above. t~(xd. tHx,) are real vectors. t~(.\"I) is a real scalar. and tHx,)./f.(x,) are a
pair of complex conjugate scalars. The vectors d. a. do are the eigenvectors of S defined in
(32).

It is not necessary to solve the eigenrelations (32) to determine d. a. do. They can be
determined explicitly in terms of any real vector as shown in the Appendix. Making use of
the orthogonality relations (41). (48}z yields

(49)

and (48) u furnishes t~(x,). The decomposition of tdx I) is now complete.
The solution for multiple interface cracks in the bimaterial contains two parts. The

first part is

for material I in x~ > 0 and

UI = Re {AI <J;)(:('))8 1 '}do•

<PI = Re {8 1(/o(:(1))8,-'}do.

U~ = Re {A2<J~(:12))Bil }do.

<P2 = Re {Bz(};)(:(Z))Bi' }do•

(50a)

(SOb)

for material 2 in X2 < O. This is identical to (24a.b) with tr replaced by do and /0(:) is an
unknown function to be determined. The second part is (43a.b) in which /(:. y) is an
unknown function to be determined. Let r denote the cracks which are located at

The functions /0(:). /(:. y) are continuous except at r and vanish at infinity. Satisfaction
of conditions (21), (22) and the prescribed tractions at r leads to

and

/0(:) = 10(:).

gri(XI)+go(XI) = -2t~(x,).

e'"g+ (XI. y) +e -;-"g- (.\"1' y) = - 2tHxd.

(51 )
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(52)

Equations (52) are the Hilbert problem for which the solutions are (Muskhelishvili. 1953)

X(=. 0)1 I~U) d;'
90(=) = - --.' -:;: C 0)(' '-:-) +Po(=)X(=. 0).m rX ).. J.-_

X(=. 'I)1e-;·"l~().) d;.
9(=. 'I) = - -.- -+- (. ,)(' _) + P(=. Y)X(:· I').

m rX ).• y ).-_

- X(=. y)1e;'"~U) d;' - -
g(=. y) = - -.- :"("":)'(-;'='::')' + P(=. Y)X(=. I')·

m rX I'•• } ). ~

In the above

n

X(=·i') = n (=-ad'I!~,j-i(=-hk) I~"iy

k - I

and P o(=). P(=. y) are polynomials in = of order less than II. They are to be determined such
that the crack opening at all crack tips vanishes. It can be shown that

leY"x'()·.y) and ie '"X'U.y)

arc complex conjugates of each other. confirming that the functions g(=. y) and g(=. y) arc
indeed complex conjugates of each other. Likewise. the solution for go(=) satisfies condition
(51 ).

The traction along the interface is. by substituting (50a.b) and (43a.b) into (18).

The traction from the first term is in the direction of the right null vector of S while that
from the second term lies on the right eigenplanc. By writing

and similar expressions for f-+- (x I. 'I).]-+- (x J, y). the crack opening displacement Au can be
shown to be

Au = -~(W+iO){U(t(xd-f(;(x,)]do+e;··lr(xl.i')-f (XI.i')]d

+e';·U"(x,.y)-]'(xl.},)]a}. (53)

Observing that the complex conjugates of

arc. respectively.

and setting
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W+iD = D(S+il),

equation (53) can be further simplified by using (32) as

200!

It is clear that the first term is in the direction of the left null vector of S while the second
terms lie on the left eigenplane.

8. CONCLUDING REMARKS

The oscillatory field in displacement leads to a physically unrealistic phenomenon of
interpenetration of the crack surfaces, although the region of interpenetration is generally
small. There have been several studies on the problem to eliminate the unrealistic inter­
penetration; see, for example, Comninou (1977), Comninou and Schmueser (1979).
Achenbach et 01. (1979), Knowles and Sternberg (1983) and Gautesen and Dundurs
(1988). The Comninou model of partial opening of the interface crack in isotropic bima­
terials has been extended to anisotropic bimaterials by Wang and Choi (1983), Wu and
Hwang (1990) and Ni and Nemat-Nasscr (in press).
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APPENDIX: AN EXPLICIT SOLUTION or THE EIGENVECTORS OF S

The matrix S detined in (31) has the properties (Ting. 19X6: Chadwick and Ting. I9X7) :

tr S = O. det S = o.

Therefore the equation for the eigenvalues ). is

(AI)

where II is given in (30). The eigenvalues arc - ill. ill. 0 and thc associated cigcnvectors d. a. d" arc related by (32).
To find d and du • take any non·zero real vector t and let

Multiplying by S. S!. and employing (32) leads to

liSt = -i(d-a).

S!t = -(d+d).

Hence

d = -lIS - illl)St

and from (A2). (A3h.

do = (S' + IJ't)t.

(A2)

(A3)

(A4)

(AS)

With d ,. d! dcnoting thc real and imaginary parts of d (33). an alternative cxpression obtained from (A4). (A2)
IS
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- I' - I .... - p: ..,d: - :fJSt. d, - - p:30:. d" - t-~d"

1003

(A6)

Similar expressions and different expressions have been obtained by Wu (in press) and Gao ttl al. (in press).
respectively.

Equations (A4)-(A6) provide an explicit expression for d. d" in terms of an arbitrarily chosen real vector t.
If t happens to be proportional to d". d obtained from (A4) or (A6) I.: vanishes. Likewise. if t is on the right
eigenplane. do obtained from (A5) or (A6) J vanishes. In these cases a different t should be employed. d obtained
from (A4) for different choices oft differ by a complex multiplier.

According to Cayley-Hamilton principle (A I) applies to S. i.e.

This confirms that d. do of (A4). (A5) indeed satisfy (31) 1.J for arbitrary t.


