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INTERFACE CRACKS IN ANISOTROPIC ELASTIC
BIMATERIALS—A DECOMPOSITION PRINCIPLE

T.C. T. Ting
Department of Civil Engineering. Mechanics and Metallurgy. University of IHinois at
Chicago. Box 4348, Chicago, IL 60680, U.S.A.

Abstract—For a mismatched bimaterial with a single interface crack subject to a constant traction
afong the crack surface, the solution can be written explicitly, separated into oscillatory part and
non-oscillatory part. The separation is shown to be related to the decomposition of the surface
traction t; into two components tf and t7. t¢ is in the direction of the right null vector of the )
matrix defined in the paper and ¢ lies on the right eigenplane of §. The solution associated with 7
is non-oscillatory. It has the property that the traction along the interfuce is in the direction of the
right null vector of S while the crack opening displacement is in the direction of the left null vector
of §. The solution associated with t, on the other hand, is oscillatory. it has the property that the
traction along the interface lies on the right eigenplane of $ while the crack opening displacement
lies on the left cigenplane of 8. The same decomposition and propertics hotd for multiple interface
cracks with variable tractions prescribed on the crack surfaces.

. INTRODUCTION

The problem of an interface crack in isotropic bimaterials was first studied by Williams
(1959) and Erdogan (1963) for the semi-infinite crack and by England (1965), Erdogan
(1965) and Rice and Sih (1965) for a finitc crack. For an interface crack in anisotropic
bimaterials, Gotoh (1967) studied the problem under the condition of planc stress which
applics to monoclinic materials with the plane of symmetry at x; = 0. The problem of a
finite interface crack in general anisotropic bimaterials was first investigated by Clements
(1971) and Willis (1971). In recent years the elegant and powerful Stroh formalism for two-
dimensional anisotropic clasticity has rekindled interests in the subject and many works
have appeared such as Ting (1986), Bassani and Qu (1989), Qu and Bassuni (1989), Tewary
et al. (1989), Suo (1990), Wu (1990, 1991, in press), Ting (1990b), Hwu (in press), Li and
Nemat-Nasser (1991), Gao ¢r al. (in press) and Qu and Li (in press).

It is known that the solution for the displacement is in general oscillatory when the
two materials in the bimaterial are mismatched. However, a mismatched bimaterial does
not always produce oscillatory solutions. The oscillation in displacement depends not only
on the mismatch parameter f§ but also on the prescribed traction tr on the crack surface.

After presenting briefly the Stroh formalism for two-dimensional elasticity and certain
identities needed for the subject in Section 2, we begin Section 3 by considering the solution
for a crack in homogencous anisotropic elastic materials. We then explore the applicability
of the solution for a crack in a4 homogeneous medium to an interface crack in bimaterials
in Scction 4. It 1s shown that the non-oscillatory solution is valid for a mismatched bimaterial
if the prescribed traction is in the direction of the null vector of W, Scction § discusses the
stress singularities at an interface crack tip which depend on the matrix S. The three right
cigenvectors of § are best represented by a right null vector (which is identical to the null
vector of W) and a right eigenplane. The decomposition of the solution into oscillatory and
non-oscillatory fields is achieved by decomposing the prescribed crack surface traction into
t?. which is in the direction of the right null vector of § and tf, which lics on the right
cigenplane of S. The solution associated with t is non-oscillatory. It has the property that
the traction along the interface is in the direction of the right null vector of § while the
crack opening displacement is in the direction of the left null vector of S. In Section 6 the
solution associated with ¢ is shown to be oscillatory. It has the property that the traction
along the interface lies on the right eigenplane of § while the crack opening displacement
lics on the left eigenplane of S. Similar propertics are obscrved for line forces and line
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dislocations in anisotropic media (Ting. 1990a). The last section examines the general case
of multiple interface cracks with variable tractions prescribed on the crack surfaces. The
same decomposition and properties are shown to hold for the general case.

2. THE STROH FORMALISM

In a fixed rectangular coordinate system x, (i = L. 2. 3) let u,. 6;; be. respectively, the
displacement and stress in an anisotropic elastic material. The stress strain laws and the
equations of equilibrium are

61; = Cu/\\“/\,,\' ([)
C,,k\llk.\, = O. (2)
where a comma stands for differentiation, repeated indices imply summation and C,y, are
the elasticity constants which are assumed to be fully symmetric and positive definite. For

two-dimensional deformations in which «, depends on x,, x. only. a general solution to (2)
1s, in matrix notation (Eshelby et al., 1953 Stroh, 1958, 1962),

u=af(z). z=x,+px,. (3)

In the above f is an arbitrary function of =, and p and a are determined by inserting (3)
into (2). We have

(Q+p(R+RYHY+p'Tla=0 (4)

where the superseript T denotes the transpose and Q. R, T are 3 x 3 real matrices whose
components are

Qu = Cuin Ry = Cur Ty =Ciyae

The stresses obtained by substituting (3), into (1) can be written in terms of the stress
function ¢ as

O, = —¢. 0=, (5)

in which
@ =b/(2). (6)
b=(R'+pT)a=— /l)v(Q +pR)a. (7

The second equality in (7) follows from (4). It suffices therefore to consider the stress
function ¢ because the stresses o, can be obtained by differentiation.

There are six eigenvalues p from (4) which consist of three pairs of complex conjugates.
If p,.a, (x = 1, 2...., 6) arc the cigenvalues and the associated cigenvectors, we let

Imp, >0, pyoy=p, 8,..=d,. b, y=hb. (x=123),
where Im stands for the imaginary part and the overbar denotes the complex conjugate.

Assuming that p, are distinct. the general solution for u and ¢ obtained by superposing six
solutions of the form (3) and (6) are
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3
U= Z {3,L(3,)+§z z+3(':1)}’

3
¢ = Z‘ {bx./;(:x)+szf;+ 3(51)} (8)

In (8) fi. fa...., fo are arbitrary functions of their argument and
I, = X HPpaXs.
In most applications f, assume the same function form so that we may write

L) = q.f(z).
.fx-i»J(:-:) = qu(fx)» o= 192-! 3,

where g, are complex constants. The second equation is for obtaining real solutions for u
and ¢. Equations (8) can then be written as

u=2Re {Af()a},
¢ = 2Re {B{f(z))q}. &)
Here Re stands for the real part, A, B are the 3 x 3 complex matrices defined by
A =[aj,aza;], B=[b,b,b;]
and {f(z)) is the diagonal matrix
S =diag [f (1), f(z2), f(23))-
For a given problem all one has to do is to determine the unknown function f(z) and the
complex constant q.
The eigenvectors a, and the associated vectors b, are not unique. When they are
normalized by
2a,°b, = 1, («not summed),
the three Barnett—Lothe tensors defined by
S =i2AB"—1), H = 2iAA", = —2iBBT, (10)
are real (Barnett and Lothe, 1973). It is clear that H and L are symmetric. It can be shown
that they are positive definite (Chadwick and Smith, 1977 ; Gundersen et al., 1987 ; Ting,
1988) and that SH, LS, H™'S, SL~' are antisymmetric. Moreover S, H, L are related by
HL-SS =1.
Let {p) be the diagonal matrix
{p> = diag [p,,p2, p;]
and
N, =-=T'R", N,=T"!, N,=RT-'R"-Q.

It is shown in (Ting, 1988) that
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B(p)B ' =G +iG,, (1H
where
G, =N-=N;SL™'. Gy=~N;L",
Identity (1 1) will be useful in the sequel. Another identity needed is
M '"=/AB '=i(AB")(BB")"' = L '—/SL"' (12)

in which the last equality 1s deduced by applying (10). M is the surface impedance tensor
which is a positive definite Hermitian (Ingebrigtsen and Tonning, 1969 ; Lothe and Barnett,
1976 . Chadwick and Smith. 1977).

3. A CRACK IN A HOMOGENEOUS MEDIUM

Consider a crack of length 2 located at x, = 0, {x,| < ain a homogeneous anisotropic
elastic medium. A uniform traction t; is applied at the upper crack surface and —t; is
applied at the lower crack surface. The stresses vanish at infinity. The boundary conditions
for the stress function ¢ are

¢=0 as |x]—-x (13)

¢=—xt, at x,= 40, |v|<a (14)

The solution in the form of (9) s (Stroh, 1958):

u = Re {A(/;,(:))B ‘}t,.
# = Re {B{f,(2)>B '}t (15)

where

folz) = \/;T;?—:. (16)

For single-valuedness of the function fy(z), a cut at the crack is introduced so that

(17)

i\/xf*az, forx, =0, =+x, >4,
+i/a*—xi. forx,= 10, |x,|<a

It is readily shown that ¢ of (15), satisfies (13) and (14). Morcover, u and ¢ are continuous
everywhere except that u is discontinuous at the crack.

Along the x,-axis, i.¢. at x, = 0, the displacement u and the stresses obtained from (5)
can be expressed in a real form. Denoting the traction vectors t,. t, by

T T2
t,=|0y | =—¢. ti=|0n| =¢, (18)
T 032

and using identities (11) and (12), onc obtains

u={x, Z}-‘\/.vf——a:}-SL"tr,

X
t, = {“"—,—_—l_‘:—_—f — I}Gltr.
T/ xi—ar
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X
(o = {———————l}tr, (19)
+/xi-a?
forx, =0, +x, >aand

u= +./a’—xiL~ "t +x,SL™ 't,

X,

/72 2
a —.t‘

tz = - tr (20)

t, =Gt F Gitr,

forx, = £0.]x,| < a. Equations (19) tell us that u, t,, t, along the x,-axis are monotonous.
The traction t, is independent of the material constants and is in the direction of the applied
traction t-. Equations (20) show that, along the crack, the displacement u and the hoop
stress vector t, have no oscillatory behavior. Other interesting and unexpected phenomena
which can be extracted from (19) and (20) are elaborated in Ting (in press).

From (20), the crack opening is

Au=u*—u" =2 /a’—xIL 't

The crack opening Au is in general not in the direction of ¢t

4. NON-OSCILLATORY SOLUTION FOR AN INTERFACE CRACK (Wt =0)
Let the half-space x; > 0 and x; < 0 be occupied by material | and material 2,
respectively. A single interface crack is located at x, = 0, |x,| < a. The boundary conditions
for the problem are

¢, =0, ¢,=0, as [x|—> 0, (#2))]
U =u; ¢ =¢, at x;=0, |x]>a, (22)
¢ =¢,=—~xtr, at x,= 10, |x|<a (23)

The subscripts 1, 2 for u and ¢ denote materials | and 2, respectively. We will investigate
in this section if the non-oscillatory solution (15) for a homogeneous medium applies to
materials | and 2.

Using subscripts 1, 2 or superscripts (1), (2) to distinguish materials | and 2, let

u, = Re {A|<fo 3“))>B|-|}trv
¢, = Re {B,{fo(z'""))B; '} tr, (24a)

for material 1 in x, > 0 and

u, = Re {A:<fo(-'-'(2’)>31~|}trs
#: = Re {B,{fo(z*))B; '}It, (24b)

for material 2 in x, < 0. It is readily shown that conditions (21)~(23) are all satisfied except
(22),, which yields

(A/B7'+A B )t = (A;B;'+A,B; )t

Employing identity (12) this is rewritten as
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Wt = 0. (25)
W=SL '-S,L;" (26)

There are two possibilities. [f W = 0, (25) is satisfied for any t-. The solutions (24a.b)
are then valid for any tr when W = 0. If W 3 0, (25) cannot be satisfied for arbitrary t,.
However. since W is antisymmetric. (25) can still be satisfied if t; is in the direction of the
null vector of W.

The two materials in the bimaterial are said to be ““mismatched™ when W # 0. We see
from the above analysis that, for a mismatched bimaterial, the non-oscillatory solution for
a homogeneous medium with a crack applies to the bimaterial with an interface crack if
the traction t- at the crack surface is in the direction of the null vector of W.

Regardless of whether W = 0 or not, the crack opening Au obtained from (20), is

Au=u; —u; = /&’ —xiDt, (27)
where
D=L'+L;" (28)

When W # 0 and if t- is not in the direction of the null vector of W, one could
decompose t- into two components, one of which is along the null vector of W. The solution
associated with this component is given by (24u.b). In the next two sections we define the
other component and the corresponding solution which is characterized by an oscillatory
ficld.

5. THE NULL VECTORS AND THE EIGENPLANES OF §

The stress singularities near the tip of an interface crack is proportional to r* where r
is the radial distance from the crack tip and 3 is a constant depending on the material
property of the bimaterial. It is shown in Ting (1986) that there are three singularities given
by

o=-4 =i+ and -l1-iy, (29)
where
7=, ! 1 :tﬁ :r[anh "B
B=[-1w @) <l (30)
In the above
S=D""'w, (31)

in which D and W are defined in (28) and (26). It is clear that y = O if and only if # = 0. It
was pointed out by Ting (1986) and rigorously proved by Qu and Bassani (1989) thatf =0
if and only if W = 0. Since D is positive definite, we conclude that 8, y, W and § are all
non-zero for mismatched bimaterials and all vanish for non-mismatched bimaterials. In the
rest of the paper we consider only mismatched bimaterials.

The tensor S is similar to S, one of three Barnett-Lothe tensors in the following sense.
We see from (31) that S is the product of a symmetric positive definite tensor D' and an
antisymmetric tensor W. So is S if we write
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S =L !(LS).

Another reason for using the notation S is that, when L, = L., (31) reduces to

S= %(SZ—SI)T-

The eigenvalues and eigenvectors of S have been studied extensively in Chadwick and
Ting (1987) and Ting (1990a). and the resultsareported there can be applied to S here. It is
shown in Ting (1986) that the eigenvalues of S are —if, iff and 0 where f§ is given in (30);.
If the associated eigenvectors are d, d and d,, we have

Sd= —ipd. Sd=ipd. Sd,=0. (32)

d, is the right null vector of S and is a real vector. d on the other hand is a complex vector
or a bivector (Gibbs, 1961 ; Boulanger and Hayes, in press). By setting

d=d,+id, (33
where d,, d, are real vectors and equating the real and imaginary parts of (32), we have
Sd, = fd,, Sd,= —pd,. 34)
Thercfore
S, =~pd. (j=12). (35)

The right null vector d,, is unique up-to an arbitrary real multiplicative factor. The
right cigenvector d or d on the other hand is unique up to an arbitrary complex multiplicative
factor. If d is multiplicd by a complex factor € where ¢ is real,

d = d) +id5,
d} = cos yd, —sin ¢d,, d5 =sinyd, +cos yd,.

Thus d}, d5 lic on the plane spanned by d,, d,. As y varies the vectors d, d3 describe an
ellipse (Fig. 1). A pair of diameters in an ellipse is said to be conjugate if all chords parallel
to one diameter are bisected by the other diameter. Therefore the tangent at the extremity
of one diameter is parallel to the other diameter. It can be shown that d}, d; form a pair
of conjugate radii. One could choose a y such that d}, d are orthogonal and hence are the
principal radii of the ellipse (Ting, 1990a).

In view of the fact that the real and imaginary parts of the right eigenvectors d and d
of (32),, lie on a plane, we call this plane the right eigenplane of S. Any vector on this

Right null vector —e d,

4 Right eigenplane

Fig. 1. The right eigenvectors of 8.
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plane can be taken as d; (or d.). which satisfies (35). The conjugate vector d. (or d,) is
then determined from (34), or (34),.

[t should be pointed out that, with (31). the right null vector d, is also the null vector
of W. Therefore. when tr is in the direction of d,. the solution is given by (24a.b). If t is
not in the direction of d, as shown in Fig. |, we decompose it into two components:

o=+t (36)
where t? is in the direction of d, and ¢} is on the right eigenplane. From (32), and (35).

St =0, St = —ft;. 37

Multiplying (36) by S° and using (37) leads to

/;“5‘511—. (38)

tp = —
whence, from (36),

Sty (39)

1] i
B =tet o

Equations (38) and (39) provide an explicit expression for tf and tf in terms of ¢-. The
solution associated with t¢ is given in (24a,b) with t; there replaced by t). We discuss the
solution assoctated with ¢ in the next scction. A
Before we close this section consider the left eigenvectors of S, From (31),
DS =W,

and the antisymmctric property of W means that

DS = -S'D. (40)
When (32) are multiplied by D and use is made of (40),

ST(Dd) = if(Dd), S'(Dd) = —ip(Dd), S'(Dd,) = 0.

Hence Dd, Dd and Dd, are the left eigenvectors associated with the eigenvalues —if, iff

and 0, respectively. We call Dd,, the left null vector of S and the plane spanned by Dd,,
Dd, the left eigenplane (Fig. 2).

Dd, <~ Left null vector

Left cigenplane

Dd,

Fig. 2. The left eigenvectors of S.
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The left and right eigenvectors associated with different eigenvalues are orthogonal to
each other. Hence

d'Dd=0=d"Dd. d'Dd, = 0 = d"Dd,. 41)

The last equality tells us that the right null vector d, is normal to the left eigenplane and
the left null vector Dd, is normal to the right eigenplane.

When ¢ is in the direction of the right null vector d, the crack opening displacement
Au given by (27) indicates that it is in the direction of the left null vector Dd,,. The direction
of the traction t, along the interface is. by (19);. the same as t; and hence is in the direction
of the right null vector.

6. OSCILLATORY SOLUTION FOR AN INTERFACE CRACK (Wt #£0)
In view of (31),
Wt #0 and Stp %0
are equivalent. As shown in (36) we decompose t;- into two components t{ and tj- which
are given explicitly in (39) and (38). The solution associated with t? is provided in (24a,b)
with t there replaced by t?. We now study the solution associated with t}.

Of the three stress singularitics at the crack tips listed in (29), the singularity § = —1/2
represents a non-oscillatory solution and is provided by the function f,(z) in (16). The
other two singularitics in (29) can be taken care of by considering the function

SEW = G-t a) =,
which has the property
S =Gy

Along the x-axis,

i\/.wcf—a2 e —x,, forx, =0, +x, > a,
(:1‘.‘ = . Y hi .. o 8 42
S G tiJaP—xieFme" —x |, forx, = +0,|x| <a. (42)
where
X, —d
&=In|~ .
X, +a

Observing the factor e¥7* in (42),. consider the solution

u, = Re {¢"A {f('".7))B; 'd+e A (f(='", y))B; 'd},
¢, = Re ("B, {f(='",7))B; 'd+c "B, (f(z'"",7))B; 'd}, (43a)

for material 1 in x, > 0 and

u, = Re {e 7"A,(f (=" 7))Bs 'd+e" A, f (=¥, 7))B5 'd},
¢: = Re {e7"B,(f(="",7))B7 'd+e"B.( f(z¥,7))B; '}, (43b)

for material 2 in x, < 0. The solution in material 1 is identical to that in material 2 if 7 is
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replaced by —r (Suo, 1990). It can be shown that the solution meets conditions (21)~(23)
with tr in (23) replaced by t; if d. d satisfy (32), , and

d+d = /1-§6. (44)
To determine d. (44) is multiplied by S. which leads to
—ipd—) = /1-pSt;. (45)
Equations (44) and (45) yield

=B e
d="> 2/;—~(Bt'r+lsti—).

Real form expressions for the displacement u, the interface traction t, and the hoop
stress vector t, along the x,-axis are deduced from (43a.b) by using (18). (11) and (12).
Forx, =0, +x, > a.

u, = 2(cosh yn) Re {(x, Fe™* \/:\:?7:53)(5. L, "+ifL D) =
u; = 2(cosh y1) Re {(x; Fe™* /x]—a’}S,L, ' —ifLy )d},

ti" = —2(cosh yn) Re En(x) ™ - 1NGs" +i[fC‘3”]d}.
t\" = —2(cosh ym) Re {[£n(x,) ¢ = 1][G —ipGP]d]).
ty = 2(cosh ym) Re {{+n(x,) ™ —1]d}, (46)
where
I X 2‘.7
coshym= - _, n(x,)= Vit st

J1-5 Ji—at
For x, = 40, |x,| <«,
u, = 2/’ = xiL{ ' Re {e"d} +2x, (cosh y7) Re {(S,L, ' +ifL; ')d}.

uy = =2 /a’ —xiLi "' Re {e7*d} +2x, (cosh ym) Re {(S,L; ' —ifL. ')d},

t\ = = GY" Re {(x, +2iya) e™d} +2(cosh y7) Re {(G!" +iG4")d},

bl
as—xi

= G Re {(x, +2iya) 3 d} 4+ 2(cosh yr) Re {(G{™ —if G)d},

t: = '—tr. (47)

It is easily verified that (46), (47) reduce to those given in (19), (20) when § (and hence 7)
vanishes. From (46) and (47) u,, t\" in material | are identical to u,, t{? in material 2 if
GY", L' (but not S,L; ") are replaced by — G, —L; ', respectively.

The traction t, along the interface | x,| > aas given in (46) depends on d. Consequently
t. lies on the right cigenplane of S as ti does (Fig. 1). As x, varies from o to a or from
— o0 to —a, t, rotates on the right eigenplane with increasing frequency and amplitude.
The crack opening Au is obtained by subtracting u, from u, in (47). The second term
vanishes due to (32), and hence
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Au = 2. /a* —xiD Re (e7d).

Thus Au depends on Dd which, according to the discussions in the last section, is on the
left eigenplane of S (Fig. 2). As x, varies from 0 to a or from 0 to —a. Au rotates on the
left eigenplane with increasing frequency and diminishing amplitude.

7. MULTIPLE INTERFACE CRACKS WITH VARIABLE TRACTIONS

The decomposition principle for a single interface crack with constant traction tr can
be extended to multiple interface cracks with variable traction tr(x,) with one minor
modification. In Fig. | the component t;-(x;) of t-(x,) on the right eigenplane may not
remain in the same direction for a different x,. It is therefore necessary to select a fixed
right eigenvector d = d, +id, on the right eigenplane and decompose t;(x,) in the form

tr(xy) = 200) +6:(x)) = @ (x o+ (x )d+ 7 (x))d. (48)

In the above, t2(x,). ti(x,) are real vectors, t2(x,) is a real scalar, and fi-(x,), fi-(x,) are a
pair of complex conjugate scalars. The vectors d. d. d, are the eigenvectors of S defined in
(32).

It is not necessary to solve the eigenrelations (32) to determine d, d, d,,. They can be
determined explicitly in terms of any real vector as shown in the Appendix. Making use of
the orthogonality relations (41), (48), yiclds

d'Dec(x))  (d, ‘id:)Ptr(xx)

butb Sl LA bt i LA 4
d'Dd = d'Dd, +d'Dd, (49)

fi(x)) =

and (48), , furnishes 17(x,). The decomposition of t-(x,) is now complete.
The solution for multiple interface cracks in the bimaterial contains two parts. The
first part is

u, = Re {A|</;)(3“))>B| I}du‘
¢, = Re {B|<fu 3(”)>Blil}du- (50a)

for material 1 in x, > 0 and

u; = Re {A,{/o(z'?))B;5 '}d,,

$: = Re {B.(fy(='"))B5 'Jd,., (50b)
for material 2 in x, < 0. This is identical to (24a,b) with t; replaced by d, and f,(z) is an
unknown function to be determined. The second part is (43a,b) in which f(z.7) is an
unknown function to be determined. Let I" denote the cracks which are located at

=0, ao<x;,<b, k=1,2,...,n

The functions f,(z), f(z. 7) are continuous except at I and vanish at infinity. Satisfaction
of conditions (21), (22) and the prescribed tractions at I' leads to

So(2) = fo(2), (51

and

gs (X)) +g5 (x)) = =212(x,),
e"gt (X1, Y)+e g7 (X, y) = = 26(x,),
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e g (x . Y)+e7G (x.7) = = 2(x,), (52)

where
d . ¢
go(2) = —:fo(:)- g(z7) = A S

Equations (52) are the Hilbert problem for which the solutions are (Muskhelishvili, 1953)

Ao x=0 [ Ry di o
go(2) = — pr ,rx*(/'..O)(/'.—:)+P"(‘)X("O)'
() [ e ™a(A) di
Ly = — - — - P(z.9)x(z. 9.
9(=.7) P R Y (=G
oo HEW [ ehddL o
y(-*l - i dri#(}.,}’)(/“_:)+P("*l)x(-~l)'

In the above

)y =[] G=a) 7@ =hy 2

k=1

and Py(2). P(z. y) are polynomials in = of order less than n. They are to be determined such
that the crack opening at all crack tips vanishes. It can be shown that

fe™yt(Ay) and ic TYT(AY)
are complex conjugates of each other, confirming that the functions g(z, y) and g(z, y) are
indeed complex conjugates of cach other. Likewise, the solution for g, () satisfies condition
(Sl)lThc traction along the interface is, by substituting (50a,b) and (43a,b) into (18),
ta(x,) = go(x,)dy+2(cosh yr) Re {g(x,,7)d}.

The traction from the first term is in the direction of the right null vector of S while that
from the second term lies on the right eigenplane. By writing

Solx) =[fa () —fa )] +Sfo(x)

and similar expressions for f*(x,. 7). f " (x,, 7). the crack opening displacement Au can be
shown to be

Au= — YW HiD){[f§ (x))=fo (xD)do+€7 [ (x1,3) =S (x1.7)]d
+e v =f (e ld). (33)

Observing that the complex conjugates of

Sotad STlenn. S (xd)
are, respectively,

foxeo, T xny, Ty

and setting
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W+iD = D(S+iD),
equation (53) can be further simplified by using (32) as

Au = Im {f7 (x,)}Ddo+ /1 =B Im {[f* (x..7) =/ (x\. )] Dd;.

It is clear that the first term is in the direction of the left null vector of § while the second
terms lie on the left eigenplane.

8. CONCLUDING REMARKS

The oscillatory field in displacement leads to a physically unrealistic phenomenon of
interpenetration of the crack surfaces, although the region of interpenetration is generally
small. There have been several studies on the problem to eliminate the unrealistic inter-
penetration: see, for example, Comninou (1977), Comninou and Schmueser (1979).
Achenbach et al. (1979), Knowles and Sternberg (1983) and Gautesen and Dundurs
(1988). The Comninou model of partial opening of the interface crack in isotropic bima-
terials has been extended to anisotropic bimaterials by Wang and Chot (1983). Wu and
Hwang (1990) and Ni and Nemat-Nasser (in press).
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APPENDIX: AN EXPLICIT SOLUTION OF THE EIGENVECTORS OF §
The matrix S defined in (31) has the properties (Ting, 1986 ; Chadwick and Ting, 1987):
r§ =0 detS =0
Therefore the equation tor the eigenvalues 4is
Ay pii=0, (AD)

where f}is given in (30). The eigenvalues are —iff, i, 0 and the associated eigenvectors d, d. d, are related by (32).
To find d and d,,. take any non-zero real vector t and let

fit=d,+d+d. (A2)

Multiplying by S, §°. and employing (32) leads to

St = ~i(d-4).

S$it=—(d+d). (A3)
Hence

= - {S—ipnSt (A4)
and from (A2). (A3),.

dy = (S + 470t (AS)

With d,. d, denoting the real and imaginary parts of d (33). an alternative expression obtained from (Ad), (A2)
is
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d; = 185t d.=—;—,Sd:‘ d, = ft—2d,. (A6)

Similar expressions and different expressions have been obtained by Wu (in press) and Gao er al. (in press).
respectively.

Equations (A4)-(A6) provide an explicit expression for d. d, in terms of an arbitrarily chosen real vector t.
If t happens to be proportional to d,. d obtained from (A4) or (A6), . vanishes. Likewise, if t is on the right
cigenplane, d, obtained from (AS5) or {A6), vanishes. In these cases a different t should be employed. d obtained
from (A4) for different choices of t differ by a complex multiplier.

According to Cayley-Hamilton principle (A1) applies to S. i.e.

$'+pS=0

This confirms that d. d,, of (A4). (AS) indeed satisfy (32), , for arbitrary t.



